Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mol Neurodegener ; 13(1): 53, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30326945

RESUMO

BACKGROUND: Rare coding variants ABI3_rs616338-T and PLCG2_rs72824905-G were identified as risk or protective factors, respectively, for Alzheimer's disease (AD). METHODS: We tested the association of these variants with five neurodegenerative diseases in Caucasian case-control cohorts: 2742 AD, 231 progressive supranuclear palsy (PSP), 838 Parkinson's disease (PD), 306 dementia with Lewy bodies (DLB) and 150 multiple system atrophy (MSA) vs. 3351 controls; and in an African-American AD case-control cohort (181 AD, 331 controls). 1479 AD and 1491 controls were non-overlapping with a prior report. RESULTS: Using Fisher's exact test, there was significant association of both ABI3_rs616338-T (OR = 1.41, p = 0.044) and PLCG2_rs72824905-G (OR = 0.56, p = 0.008) with AD. These OR estimates were maintained in the non-overlapping replication AD-control analysis, albeit at reduced significance (ABI3_rs616338-T OR = 1.44, p = 0.12; PLCG2_rs72824905-G OR = 0.66, p = 0.19). None of the other cohorts showed significant associations that were concordant with those for AD, although the DLB cohort had suggestive findings (Fisher's test: ABI3_rs616338-T OR = 1.79, p = 0.097; PLCG2_rs72824905-G OR = 0.32, p = 0.124). PLCG2_rs72824905-G showed suggestive association with pathologically-confirmed MSA (OR = 2.39, p = 0.050) and PSP (OR = 1.97, p = 0.061), although in the opposite direction of that for AD. We assessed RNA sequencing data from 238 temporal cortex (TCX) and 224 cerebellum (CER) samples from AD, PSP and control patients and identified co-expression networks, enriched in microglial genes and immune response GO terms, and which harbor PLCG2 and/or ABI3. These networks had higher expression in AD, but not in PSP TCX, compared to controls. This expression association did not survive adjustment for brain cell type population changes. CONCLUSIONS: We validated the associations previously reported with ABI3_rs616338-T and PLCG2_rs72824905-G in a Caucasian AD case-control cohort, and observed a similar direction of effect in DLB. Conversely, PLCG2_rs72824905-G showed suggestive associations with PSP and MSA in the opposite direction. We identified microglial gene-enriched co-expression networks with significantly higher levels in AD TCX, but not in PSP, a primary tauopathy. This co-expression network association appears to be driven by microglial cell population changes in a brain region affected by AD pathology. Although these findings require replication in larger cohorts, they suggest distinct effects of the microglial genes, ABI3 and PLCG2 in neurodegenerative diseases that harbor significant vs. low/no amyloid ß pathology.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Mutação de Sentido Incorreto , Doenças Neurodegenerativas/genética , Fosfolipase C gama/genética , Negro ou Afro-Americano/genética , Idoso , Idoso de 80 Anos ou mais , Encéfalo/metabolismo , Feminino , Humanos , Masculino , Microglia/metabolismo , Fatores de Risco , População Branca/genética
2.
J Exp Med ; 215(9): 2247-2264, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30158114

RESUMO

There is considerable interest in harnessing innate immunity to treat Alzheimer's disease (AD). Here, we explore whether a decoy receptor strategy using the ectodomain of select TLRs has therapeutic potential in AD. AAV-mediated expression of human TLR5 ectodomain (sTLR5) alone or fused to human IgG4 Fc (sTLR5Fc) results in robust attenuation of amyloid ß (Aß) accumulation in a mouse model of Alzheimer-type Aß pathology. sTLR5Fc binds to oligomeric and fibrillar Aß with high affinity, forms complexes with Aß, and blocks Aß toxicity. Oligomeric and fibrillar Aß modulates flagellin-mediated activation of human TLR5 but does not, by itself, activate TLR5 signaling. Genetic analysis shows that rare protein coding variants in human TLR5 may be associated with a reduced risk of AD. Further, transcriptome analysis shows altered TLR gene expression in human AD. Collectively, our data suggest that TLR5 decoy receptor-based biologics represent a novel and safe Aß-selective class of biotherapy in AD.


Assuntos
Doença de Alzheimer , Fragmentos Fc das Imunoglobulinas/uso terapêutico , Imunoglobulina G/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Receptor 5 Toll-Like/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/imunologia , Animais , Feminino , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Camundongos , Camundongos Transgênicos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/imunologia
3.
Acta Neuropathol ; 136(5): 709-727, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30136084

RESUMO

Progressive supranuclear palsy (PSP) is a neurodegenerative parkinsonian disorder characterized by tau pathology in neurons and glial cells. Transcriptional regulation has been implicated as a potential mechanism in conferring disease risk and neuropathology for some PSP genetic risk variants. However, the role of transcriptional changes as potential drivers of distinct cell-specific tau lesions has not been explored. In this study, we integrated brain gene expression measurements, quantitative neuropathology traits and genome-wide genotypes from 268 autopsy-confirmed PSP patients to identify transcriptional associations with unique cell-specific tau pathologies. We provide individual transcript and transcriptional network associations for quantitative oligodendroglial (coiled bodies = CB), neuronal (neurofibrillary tangles = NFT), astrocytic (tufted astrocytes = TA) tau pathology, and tau threads and genomic annotations of these findings. We identified divergent patterns of transcriptional associations for the distinct tau lesions, with the neuronal and astrocytic neuropathologies being the most different. We determined that NFT are positively associated with a brain co-expression network enriched for synaptic and PSP candidate risk genes, whereas TA are positively associated with a microglial gene-enriched immune network. In contrast, TA is negatively associated with synaptic and NFT with immune system transcripts. Our findings have implications for the diverse molecular mechanisms that underlie cell-specific vulnerability and disease risk in PSP.


Assuntos
Química Encefálica/genética , Expressão Gênica/genética , Paralisia Supranuclear Progressiva/genética , Paralisia Supranuclear Progressiva/patologia , Tauopatias/genética , Tauopatias/patologia , Idoso , Astrócitos/patologia , Feminino , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Humanos , Sistema Imunitário/patologia , Imuno-Histoquímica , Masculino , Emaranhados Neurofibrilares/genética , Emaranhados Neurofibrilares/patologia , Neurônios/patologia , Proteoma , RNA/biossíntese , RNA/genética , Sinapses/patologia
4.
Alzheimers Dement ; 14(3): 352-366, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29107053

RESUMO

INTRODUCTION: Comparative transcriptome analyses in Alzheimer's disease (AD) and other neurodegenerative proteinopathies can uncover both shared and distinct disease pathways. METHODS: We analyzed 940 brain transcriptomes including patients with AD, progressive supranuclear palsy (PSP; a primary tauopathy), and control subjects. RESULTS: We identified transcriptional coexpression networks implicated in myelination, which were lower in PSP temporal cortex (TCX) compared with AD. Some of these associations were retained even after adjustments for brain cell population changes. These TCX myelination network structures were preserved in cerebellum but they were not differentially expressed in cerebellum between AD and PSP. Myelination networks were downregulated in both AD and PSP, when compared with control TCX samples. DISCUSSION: Downregulation of myelination networks may underlie both PSP and AD pathophysiology, but may be more pronounced in PSP. These data also highlight conservation of transcriptional networks across brain regions and the influence of cell type changes on these networks.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Paralisia Supranuclear Progressiva/metabolismo , Transcriptoma , Doença de Alzheimer/genética , Estudos de Coortes , Biologia Computacional , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Masculino , Bainha de Mielina/metabolismo , Neurônios/metabolismo , Paralisia Supranuclear Progressiva/genética
5.
Alzheimers Dement ; 13(6): 663-673, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27939925

RESUMO

INTRODUCTION: We hypothesized that common Alzheimer's disease (AD)-associated variants within the triggering receptor expressed on myeloid (TREM) gene cluster influence disease through gene expression. METHODS: Expression microarrays on temporal cortex and cerebellum from ∼400 neuropathologically diagnosed subjects and two independent RNAseq replication cohorts were used for expression quantitative trait locus analysis. RESULTS: A variant within a DNase hypersensitive site 5' of TREM2, rs9357347-C, associates with reduced AD risk and increased TREML1 and TREM2 levels (uncorrected P = 6.3 × 10-3 and 4.6 × 10-2, respectively). Meta-analysis on expression quantitative trait locus results from three independent data sets (n = 1006) confirmed these associations (uncorrected P = 3.4 × 10-2 and 3.5 × 10-3, Bonferroni-corrected P = 6.7 × 10-2 and 7.1 × 10-3, respectively). DISCUSSION: Our findings point to rs9357347 as a functional regulatory variant that contributes to a protective effect observed at the TREM locus in the International Genomics of Alzheimer's Project genome-wide association study meta-analysis and suggest concomitant increase in TREML1 and TREM2 brain levels as a potential mechanism for protection from AD.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Idoso , Idoso de 80 Anos ou mais , Cerebelo/metabolismo , Feminino , Expressão Gênica , Predisposição Genética para Doença , Variação Genética , Humanos , Desequilíbrio de Ligação , Masculino , Análise em Microsséries , Família Multigênica , Locos de Características Quantitativas , Lobo Temporal/metabolismo
6.
Sci Data ; 3: 160089, 2016 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-27727239

RESUMO

Previous genome-wide association studies (GWAS), conducted by our group and others, have identified loci that harbor risk variants for neurodegenerative diseases, including Alzheimer's disease (AD). Human disease variants are enriched for polymorphisms that affect gene expression, including some that are known to associate with expression changes in the brain. Postulating that many variants confer risk to neurodegenerative disease via transcriptional regulatory mechanisms, we have analyzed gene expression levels in the brain tissue of subjects with AD and related diseases. Herein, we describe our collective datasets comprised of GWAS data from 2,099 subjects; microarray gene expression data from 773 brain samples, 186 of which also have RNAseq; and an independent cohort of 556 brain samples with RNAseq. We expect that these datasets, which are available to all qualified researchers, will enable investigators to explore and identify transcriptional mechanisms contributing to neurodegenerative diseases.


Assuntos
Doença de Alzheimer/genética , Genoma Humano , Doenças Neurodegenerativas/genética , Transcriptoma , Estudo de Associação Genômica Ampla , Humanos
7.
Acta Neuropathol ; 132(2): 197-211, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27115769

RESUMO

To determine the effects of single nucleotide polymorphisms (SNPs) identified in a genome-wide association study of progressive supranuclear palsy (PSP), we tested their association with brain gene expression, CpG methylation and neuropathology. In 175 autopsied PSP subjects, we performed associations between seven PSP risk variants and temporal cortex levels of 20 genes in-cis, within ±100 kb. Methylation measures were collected using reduced representation bisulfite sequencing in 43 PSP brains. To determine whether SNP/expression associations are due to epigenetic modifications, CpG methylation levels of associated genes were tested against relevant variants. Quantitative neuropathology endophenotypes were tested for SNP associations in 422 PSP subjects. Brain levels of LRRC37A4 and ARL17B were associated with rs8070723; MOBP with rs1768208 and both ARL17A and ARL17B with rs242557. Expression associations for LRRC37A4 and MOBP were available in an additional 100 PSP subjects. Meta-analysis revealed highly significant associations for PSP risk alleles of rs8070723 and rs1768208 with higher LRRC37A4 and MOBP brain levels, respectively. Methylation levels of one CpG in the 3' region of ARL17B associated with rs242557 and rs8070723. Additionally, methylation levels of an intronic ARL17A CpG associated with rs242557 and that of an intronic MOBP CpG with rs1768208. MAPT and MOBP region risk alleles also associated with higher levels of neuropathology. Strongest associations were observed for rs242557/coiled bodies and tufted astrocytes; and for rs1768208/coiled bodies and tau threads. These findings suggest that PSP variants at MAPT and MOBP loci may confer PSP risk via influencing gene expression and tau neuropathology. MOBP, LRRC37A4, ARL17A and ARL17B warrant further assessment as candidate PSP risk genes. Our findings have implications for the mechanism of action of variants at some of the top PSP risk loci.


Assuntos
Alelos , Metilação de DNA , Expressão Gênica/fisiologia , Estudo de Associação Genômica Ampla , Paralisia Supranuclear Progressiva/genética , Paralisia Supranuclear Progressiva/metabolismo , Idoso , Idoso de 80 Anos ou mais , Feminino , Expressão Gênica/genética , Loci Gênicos , Humanos , Masculino , Neuropatologia/métodos , Polimorfismo de Nucleotídeo Único/genética , Risco , Proteínas tau/genética , Proteínas tau/metabolismo
8.
Nat Commun ; 6: 7247, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26077951

RESUMO

Corticobasal degeneration (CBD) is a neurodegenerative disorder affecting movement and cognition, definitively diagnosed only at autopsy. Here, we conduct a genome-wide association study (GWAS) in CBD cases (n=152) and 3,311 controls, and 67 CBD cases and 439 controls in a replication stage. Associations with meta-analysis were 17q21 at MAPT (P=1.42 × 10(-12)), 8p12 at lnc-KIF13B-1, a long non-coding RNA (rs643472; P=3.41 × 10(-8)), and 2p22 at SOS1 (rs963731; P=1.76 × 10(-7)). Testing for association of CBD with top progressive supranuclear palsy (PSP) GWAS single-nucleotide polymorphisms (SNPs) identified associations at MOBP (3p22; rs1768208; P=2.07 × 10(-7)) and MAPT H1c (17q21; rs242557; P=7.91 × 10(-6)). We previously reported SNP/transcript level associations with rs8070723/MAPT, rs242557/MAPT, and rs1768208/MOBP and herein identified association with rs963731/SOS1. We identify new CBD susceptibility loci and show that CBD and PSP share a genetic risk factor other than MAPT at 3p22 MOBP (myelin-associated oligodendrocyte basic protein).


Assuntos
Doenças dos Gânglios da Base/genética , Cinesinas/genética , Proteínas da Mielina/genética , Doenças Neurodegenerativas/genética , RNA Longo não Codificante/genética , Proteína SOS1/genética , Paralisia Supranuclear Progressiva/genética , Proteínas tau/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Córtex Cerebral , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Adulto Jovem
9.
Neurol Genet ; 1(2): e15, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27066552

RESUMO

OBJECTIVE: To investigate the top late-onset Alzheimer disease (LOAD) risk loci detected or confirmed by the International Genomics of Alzheimer's Project for association with brain gene expression levels to identify variants that influence Alzheimer disease (AD) risk through gene expression regulation. METHODS: Expression levels from the cerebellum (CER) and temporal cortex (TCX) were obtained using Illumina whole-genome cDNA-mediated annealing, selection, extension, and ligation assay (WG-DASL) for ∼400 autopsied patients (∼200 with AD and ∼200 with non-AD pathologies). We tested 12 significant LOAD genome-wide association study (GWAS) index single nucleotide polymorphisms (SNPs) for cis association with levels of 34 genes within ±100 kb. We also evaluated brain levels of 14 LOAD GWAS candidate genes for association with 1,899 cis-SNPs. Significant associations were validated in a subset of TCX samples using next-generation RNA sequencing (RNAseq). RESULTS: We identified strong associations of brain CR1, HLA-DRB1, and PILRB levels with LOAD GWAS index SNPs. We also detected other strong cis-SNPs for LOAD candidate genes MEF2C, ZCWPW1, and SLC24A4. MEF2C and SLC24A4, but not ZCWPW1 cis-SNPs, also associate with LOAD risk, independent of the index SNPs. The TCX expression associations could be validated with RNAseq for CR1, HLA-DRB1, ZCWPW1, and SLC24A4. CONCLUSIONS: Our results suggest that some LOAD GWAS variants mark brain regulatory loci, nominate genes under regulation by LOAD risk variants, and annotate these variants for their brain regulatory effects.

10.
Alzheimers Res Ther ; 6(4): 39, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25324900

RESUMO

INTRODUCTION: MAPT encodes for tau, the predominant component of neurofibrillary tangles that are neuropathological hallmarks of Alzheimer's disease (AD). Genetic association of MAPT variants with late-onset AD (LOAD) risk has been inconsistent, although insufficient power and incomplete assessment of MAPT haplotypes may account for this. METHODS: We examined the association of MAPT haplotypes with LOAD risk in more than 20,000 subjects (n-cases = 9,814, n-controls = 11,550) from Mayo Clinic (n-cases = 2,052, n-controls = 3,406) and the Alzheimer's Disease Genetics Consortium (ADGC, n-cases = 7,762, n-controls = 8,144). We also assessed associations with brain MAPT gene expression levels measured in the cerebellum (n = 197) and temporal cortex (n = 202) of LOAD subjects. Six single nucleotide polymorphisms (SNPs) which tag MAPT haplotypes with frequencies greater than 1% were evaluated. RESULTS: H2-haplotype tagging rs8070723-G allele associated with reduced risk of LOAD (odds ratio, OR = 0.90, 95% confidence interval, CI = 0.85-0.95, p = 5.2E-05) with consistent results in the Mayo (OR = 0.81, p = 7.0E-04) and ADGC (OR = 0.89, p = 1.26E-04) cohorts. rs3785883-A allele was also nominally significantly associated with LOAD risk (OR = 1.06, 95% CI = 1.01-1.13, p = 0.034). Haplotype analysis revealed significant global association with LOAD risk in the combined cohort (p = 0.033), with significant association of the H2 haplotype with reduced risk of LOAD as expected (p = 1.53E-04) and suggestive association with additional haplotypes. MAPT SNPs and haplotypes also associated with brain MAPT levels in the cerebellum and temporal cortex of AD subjects with the strongest associations observed for the H2 haplotype and reduced brain MAPT levels (ß = -0.16 to -0.20, p = 1.0E-03 to 3.0E-03). CONCLUSIONS: These results confirm the previously reported MAPT H2 associations with LOAD risk in two large series, that this haplotype has the strongest effect on brain MAPT expression amongst those tested and identify additional haplotypes with suggestive associations, which require replication in independent series. These biologically congruent results provide compelling evidence to screen the MAPT region for regulatory variants which confer LOAD risk by influencing its brain gene expression.

11.
Nat Neurosci ; 17(9): 1156-63, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25129075

RESUMO

We used a collection of 708 prospectively collected autopsied brains to assess the methylation state of the brain's DNA in relation to Alzheimer's disease (AD). We found that the level of methylation at 71 of the 415,848 interrogated CpGs was significantly associated with the burden of AD pathology, including CpGs in the ABCA7 and BIN1 regions, which harbor known AD susceptibility variants. We validated 11 of the differentially methylated regions in an independent set of 117 subjects. Furthermore, we functionally validated these CpG associations and identified the nearby genes whose RNA expression was altered in AD: ANK1, CDH23, DIP2A, RHBDF2, RPL13, SERPINF1 and SERPINF2. Our analyses suggest that these DNA methylation changes may have a role in the onset of AD given that we observed them in presymptomatic subjects and that six of the validated genes connect to a known AD susceptibility gene network.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Anquirinas/genética , Proteínas de Transporte/genética , Metilação de DNA/genética , Proteínas Nucleares/genética , Proteínas Supressoras de Tumor/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/epidemiologia , Amiloidose/epidemiologia , Amiloidose/genética , Amiloidose/patologia , Encéfalo/patologia , Encéfalo/fisiologia , Ilhas de CpG/genética , Feminino , Predisposição Genética para Doença/epidemiologia , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Pessoa de Meia-Idade , Mapas de Interação de Proteínas
12.
PLoS Genet ; 8(6): e1002707, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22685416

RESUMO

Genetic variants that modify brain gene expression may also influence risk for human diseases. We measured expression levels of 24,526 transcripts in brain samples from the cerebellum and temporal cortex of autopsied subjects with Alzheimer's disease (AD, cerebellar n=197, temporal cortex n=202) and with other brain pathologies (non-AD, cerebellar n=177, temporal cortex n=197). We conducted an expression genome-wide association study (eGWAS) using 213,528 cisSNPs within ± 100 kb of the tested transcripts. We identified 2,980 cerebellar cisSNP/transcript level associations (2,596 unique cisSNPs) significant in both ADs and non-ADs (q<0.05, p=7.70 × 10(-5)-1.67 × 10(-82)). Of these, 2,089 were also significant in the temporal cortex (p=1.85 × 10(-5)-1.70 × 10(-141)). The top cerebellar cisSNPs had 2.4-fold enrichment for human disease-associated variants (p<10(-6)). We identified novel cisSNP/transcript associations for human disease-associated variants, including progressive supranuclear palsy SLCO1A2/rs11568563, Parkinson's disease (PD) MMRN1/rs6532197, Paget's disease OPTN/rs1561570; and we confirmed others, including PD MAPT/rs242557, systemic lupus erythematosus and ulcerative colitis IRF5/rs4728142, and type 1 diabetes mellitus RPS26/rs1701704. In our eGWAS, there was 2.9-3.3 fold enrichment (p<10(-6)) of significant cisSNPs with suggestive AD-risk association (p<10(-3)) in the Alzheimer's Disease Genetics Consortium GWAS. These results demonstrate the significant contributions of genetic factors to human brain gene expression, which are reliably detected across different brain regions and pathologies. The significant enrichment of brain cisSNPs among disease-associated variants advocates gene expression changes as a mechanism for many central nervous system (CNS) and non-CNS diseases. Combined assessment of expression and disease GWAS may provide complementary information in discovery of human disease variants with functional implications. Our findings have implications for the design and interpretation of eGWAS in general and the use of brain expression quantitative trait loci in the study of human disease genetics.


Assuntos
Doença de Alzheimer/genética , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Lobo Temporal , Autopsia , Predisposição Genética para Doença , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único , RNA/genética , Lobo Temporal/metabolismo
13.
Front Oncol ; 2: 12, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22655260

RESUMO

KRAS mutations are highly prevalent in non-small cell lung cancer (NSCLC), and tumors harboring these mutations tend to be aggressive and resistant to chemotherapy. We used next-generation sequencing technology to identify pathways that are specifically altered in lung tumors harboring a KRAS mutation. Paired-end RNA-sequencing of 15 primary lung adenocarcinoma tumors (8 harboring mutant KRAS and 7 with wild-type KRAS) were performed. Sequences were mapped to the human genome, and genomic features, including differentially expressed genes, alternate splicing isoforms and single nucleotide variants, were determined for tumors with and without KRAS mutation using a variety of computational methods. Network analysis was carried out on genes showing differential expression (374 genes), alternate splicing (259 genes), and SNV-related changes (65 genes) in NSCLC tumors harboring a KRAS mutation. Genes exhibiting two or more connections from the lung adenocarcinoma network were used to carry out integrated pathway analysis. The most significant signaling pathways identified through this analysis were the NFκB, ERK1/2, and AKT pathways. A 27 gene mutant KRAS-specific sub network was extracted based on gene-gene connections from the integrated network, and interrogated for druggable targets. Our results confirm previous evidence that mutant KRAS tumors exhibit activated NFκB, ERK1/2, and AKT pathways and may be preferentially sensitive to target therapeutics toward these pathways. In addition, our analysis indicates novel, previously unappreciated links between mutant KRAS and the TNFR and PPARγ signaling pathways, suggesting that targeted PPARγ antagonists and TNFR inhibitors may be useful therapeutic strategies for treatment of mutant KRAS lung tumors. Our study is the first to integrate genomic features from RNA-Seq data from NSCLC and to define a first draft genomic landscape model that is unique to tumors with oncogenic KRAS mutations.

14.
Neurology ; 79(3): 221-8, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22722634

RESUMO

OBJECTIVE: Recent genome-wide association studies (GWAS) of late-onset Alzheimer disease (LOAD) identified 9 novel risk loci. Discovery of functional variants within genes at these loci is required to confirm their role in Alzheimer disease (AD). Single nucleotide polymorphisms that influence gene expression (eSNPs) constitute an important class of functional variants. We therefore investigated the influence of the novel LOAD risk loci on human brain gene expression. METHODS: We measured gene expression levels in the cerebellum and temporal cortex of autopsied AD subjects and those with other brain pathologies (∼400 total subjects). To determine whether any of the novel LOAD risk variants are eSNPs, we tested their cis-association with expression of 6 nearby LOAD candidate genes detectable in human brain (ABCA7, BIN1, CLU, MS4A4A, MS4A6A, PICALM) and an additional 13 genes ±100 kb of these SNPs. To identify additional eSNPs that influence brain gene expression levels of the novel candidate LOAD genes, we identified SNPs ±100 kb of their location and tested for cis-associations. RESULTS: CLU rs11136000 (p = 7.81 × 10(-4)) and MS4A4A rs2304933/rs2304935 (p = 1.48 × 10(-4)-1.86 × 10(-4)) significantly influence temporal cortex expression levels of these genes. The LOAD-protective CLU and risky MS4A4A locus alleles associate with higher brain levels of these genes. There are other cis-variants that significantly influence brain expression of CLU and ABCA7 (p = 4.01 × 10(-5)-9.09 × 10(-9)), some of which also associate with AD risk (p = 2.64 × 10(-2)-6.25 × 10(-5)). CONCLUSIONS: CLU and MS4A4A eSNPs may at least partly explain the LOAD risk association at these loci. CLU and ABCA7 may harbor additional strong eSNPs. These results have implications in the search for functional variants at the novel LOAD risk loci.


Assuntos
Doença de Alzheimer/genética , Química Encefálica/genética , Expressão Gênica/fisiologia , Idoso , Alelos , Apolipoproteína E4/genética , Autopsia , Feminino , Dosagem de Genes , Predisposição Genética para Doença , Genótipo , Humanos , Modelos Lineares , Masculino , Polimorfismo de Nucleotídeo Único , RNA/genética , RNA/isolamento & purificação , Fatores de Risco , Lobo Temporal/metabolismo
15.
Mol Neurodegener ; 7: 13, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22494505

RESUMO

BACKGROUND: Glutathione S-transferase omega-1 and 2 genes (GSTO1, GSTO2), residing within an Alzheimer and Parkinson disease (AD and PD) linkage region, have diverse functions including mitigation of oxidative stress and may underlie the pathophysiology of both diseases. GSTO polymorphisms were previously reported to associate with risk and age-at-onset of these diseases, although inconsistent follow-up study designs make interpretation of results difficult. We assessed two previously reported SNPs, GSTO1 rs4925 and GSTO2 rs156697, in AD (3,493 ADs vs. 4,617 controls) and PD (678 PDs vs. 712 controls) for association with disease risk (case-controls), age-at-diagnosis (cases) and brain gene expression levels (autopsied subjects). RESULTS: We found that rs156697 minor allele associates with significantly increased risk (odds ratio = 1.14, p = 0.038) in the older ADs with age-at-diagnosis > 80 years. The minor allele of GSTO1 rs4925 associates with decreased risk in familial PD (odds ratio = 0.78, p = 0.034). There was no other association with disease risk or age-at-diagnosis. The minor alleles of both GSTO SNPs associate with lower brain levels of GSTO2 (p = 4.7 × 10-11-1.9 × 10-27), but not GSTO1. Pathway analysis of significant genes in our brain expression GWAS, identified significant enrichment for glutathione metabolism genes (p = 0.003). CONCLUSION: These results suggest that GSTO locus variants may lower brain GSTO2 levels and consequently confer AD risk in older age. Other glutathione metabolism genes should be assessed for their effects on AD and other chronic, neurologic diseases.


Assuntos
Doença de Alzheimer/genética , Predisposição Genética para Doença , Glutationa Transferase/genética , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único/genética , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Alelos , Doença de Alzheimer/enzimologia , Seguimentos , Expressão Gênica , Humanos , Pessoa de Meia-Idade , Doença de Parkinson/enzimologia , Fatores de Risco
16.
PLoS One ; 5(1): e8764, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-20098734

RESUMO

BACKGROUND: The insulin-degrading enzyme gene (IDE) is a strong functional and positional candidate for late onset Alzheimer's disease (LOAD). METHODOLOGY/PRINCIPAL FINDINGS: We examined conserved regions of IDE and its 10 kb flanks in 269 AD cases and 252 controls thereby identifying 17 putative functional polymorphisms. These variants formed eleven haplotypes that were tagged with ten variants. Four of these showed significant association with IDE transcript levels in samples from 194 LOAD cerebella. The strongest, rs6583817, which has not previously been reported, showed unequivocal association (p = 1.5x10(-8), fold-increase = 2.12,); the eleven haplotypes were also significantly associated with transcript levels (global p = 0.003). Using an in vitro dual luciferase reporter assay, we found that rs6583817 increases reporter gene expression in Be(2)-C (p = 0.006) and HepG2 (p = 0.02) cell lines. Furthermore, using data from a recent genome-wide association study of two Croatian isolated populations (n = 1,879), we identified a proxy for rs6583817 that associated significantly with decreased plasma Abeta40 levels (ss = -0.124, p = 0.011) and total measured plasma Abeta levels (b = -0.130, p = 0.009). Finally, rs6583817 was associated with decreased risk of LOAD in 3,891 AD cases and 3,605 controls. (OR = 0.87, p = 0.03), and the eleven IDE haplotypes (global p = 0.02) also showed significant association. CONCLUSIONS: Thus, a previously unreported variant unequivocally associated with increased IDE expression was also associated with reduced plasma Abeta40 and decreased LOAD susceptibility. Genetic association between LOAD and IDE has been difficult to replicate. Our findings suggest that targeted testing of expression SNPs (eSNPs) strongly associated with altered transcript levels in autopsy brain samples may be a powerful way to identify genetic associations with LOAD that would otherwise be difficult to detect.


Assuntos
Doença de Alzheimer/enzimologia , Peptídeos beta-Amiloides/genética , Insulisina/genética , RNA Mensageiro/genética , Doença de Alzheimer/genética , Estudos de Casos e Controles , Humanos
17.
Nat Genet ; 41(2): 192-8, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19136949

RESUMO

By analyzing late-onset Alzheimer's disease (LOAD) in a genome-wide association study (313,504 SNPs, three series, 844 cases and 1,255 controls) and evaluating the 25 SNPs with the most significant allelic association in four additional series (1,547 cases and 1,209 controls), we identified a SNP (rs5984894) on Xq21.3 in PCDH11X that is strongly associated with LOAD in individuals of European descent from the United States. Analysis of rs5984894 by multivariable logistic regression adjusted for sex gave global P values of 5.7 x 10(-5) in stage 1, 4.8 x 10(-6) in stage 2 and 3.9 x 10(-12) in the combined data. Odds ratios were 1.75 (95% CI = 1.42-2.16) for female homozygotes (P = 2.0 x 10(-7)) and 1.26 (95% CI = 1.05-1.51) for female heterozygotes (P = 0.01) compared to female noncarriers. For male hemizygotes (P = 0.07) compared to male noncarriers, the odds ratio was 1.18 (95% CI = 0.99-1.41).


Assuntos
Doença de Alzheimer/genética , Caderinas/genética , Predisposição Genética para Doença , Variação Genética , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/epidemiologia , Estudos de Casos e Controles , Feminino , Frequência do Gene , Variação Genética/fisiologia , Estudo de Associação Genômica Ampla , Heterozigoto , Humanos , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Protocaderinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...